10f18

Certified Scrum Developer
Course Workbook

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

20f 18

Agile Manifesto

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Agile Principles

Our highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

Welcome changing requirements, even late
in development. Agile processes harness
change for the customer's competitive
advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a
development team is face-to-face
conversation.

Working software is the primary measure of
progress.

Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant
pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and
designs emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and
adjusts its behaviour accordingly.

Source: http://www.agilemanifesto.org

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

30f18

Introduction to the class

Why are we here?
Effective Scrum (or more generally, Agile) teams are able to deliver more value, sooner, to their
clients. Additionally, they’re able to continuously deliver this value over long periods of time.

To do that, we require effective teamwork and product management to ensure we’re building the
right thing at the right time. We also need technical excellence in order to ensure that we're
building the thing “right”.

This class is about the latter. How do we build technical excellence into everything we do? How

do we get quality up and delivery faster? How do we change so that we’re spending more time
on building new features and less on fixing broken ones?

A note about getting better

o
%&
>
0
N\ &

§ <
®© P
= oF @ &
2 x> < & &
5 b 2 >
o 2 Team is proficient

at new practice

New practice Team starts to understand
introduced AN how it will really benefit them

Time >

SATIR CHANGE CURVE

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

4 0f 18

Cynefin

Source: http://cognitive-edge.com/

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

50f 18

Scrum
Produ_ct backlog 24 Hours
refinement
Daily standup
S \
I Product | Sprint review
| Backlog & demo
| | .
N ’ Sprint
1-4 weeks
Team :’—““_ __________ \

oo . retrospective Working, tested |
! , | 1 code that could |
! Sprint ! . |
| Backlog ! | beputin
l 9. | production if the !
M ____- 1

|

|

business choses !
]

\ 7z

NS — =

Sprint planning

The definitive documentation for Scrum is the Scrum Guide, which can be found at http://
www.scrumguides.org/

If something isn’t in this document then it isn’t part of canonical scrum. Having said that, there
are many practices that today are commonplace for Scrum teams and yet aren'’t in this
document at all. Stories, story points and technical practices to name just a few.

Ken and Jeff, the creators of Scrum and authors of the Scrum Guide, have stated repeatedly
that anyone using Scrum for software development should extend the scrum practices with
strong technical practices. Specifically, they refer to the set of technical practices from eXtreme
Programming (XP) which is what we will cover in this class.

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

http://www.scrumguides.org/

6 of 18

Personas

Who is trying to use the product?

What is this person wanting to do?

What need is this product solving for them?

Name: Name:

Background: Background:

Reason for using the product: Reason for using the product:

e —————

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

7 0of 18

Story Mapping

Email " Email Calendar oriticrs
Search File Compose Read Delete View Create Update View Create Update Delete
Email Emails Email Email Email Calendar Appt Appt Appt Contact Contact Contact
wr
ccclD C;gﬂfenr;- Open te Delete View lisi Create ~ Update View g:;‘f“e“" Updaie.
by Emails gosif:e basic email of appts basic contents Appt conlrz ot contact
Keyword s email appt /location info
wr
Create™™ Send Open View — Create Accept/
sub RTFe- RTFe- Monthly RTF appt Reject/T
folders mail mail formats entative
SRS p— — Release 1
Limit Send Open EmpYY View Create Propose i Update Delete
Search HTMLe- HTMLe- DZl€fed paily HTML new time addressy Addressi COROCE
_Ti?etl)m mail mail = Format appt 2 Info
Limit Open
Set Mandato
f:‘ll::Ch email ::;(SJChm ry/Optio Example story map created by Steve Rogalsky
field priority nal hitp://winnipegagilist. blogspot.com Re'eﬂse 2
|
Search Get View Get View Import
attachm address Weekl address Attachm Contacts
ents from = from ents
contacts ormats contacts
Search Send Add Export
sub Attachm ?:Iu:::ar Attachm Contacts
folders ents ents
e A e - . ~ Release 3
. ___|

Source: http://winnipegagilist.blogspot.ca/2012/03/how-to-create-user-story-map.html

User Story
Mapping

DISCOVER THE WHOLE STORY,
BUILD THE RIGHT PRODUCT

Jeff Patton
with Peter Economy

Forewords by Martin Fowler,
Alan Cooper, and Marty Cagan

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

http://winnipegagilist.blogspot.ca/2012/03/how-to-create-user-story-map.html

80f18

€10z/9z/€ pajepdn jseq

ssac01d siy3 Jo doy ay) e uiebe
14B]S pUB ‘WaY) JIaMSue 0}
wnwiuiw 3y3 op ‘suonsanb
350U} yum axids e a3um
‘ujebe £13 pue /

>eaiq e axe) / e nok
2

Buipjoy ysow suonsanb

*19133q SHIOM 31 JI 335 O}
wianed Jayjoue K13 pjnod
noA ybnoy ‘suop a1,nox

™~

039 ‘uonebiiw
s ‘Buiuies) ‘anjea Alies
noA s396 1ey) yam 1els oy

*s1y3 396 ued noA J1 99s
0} wianed sayjoue Aij

‘S90S anok Jo yoea ul
a1sem aney A|qeqoid nop

‘wianed Jayjoue A1 /

£9139|9p 4o dzuoudap ued
noA sa110)s 219y} Ay

/

ZLSIANI Aysiaes saliols
3y3 jo yoea oq

‘wianed Jayjoue A1

*sa110)s J|ds-1sod
1961e] Y3 10 K103S [UIBLIO

3y} uo usayred sayjoue A1 /

/ $A1120]9A IN0K JO 94 01 04
oN Inoge K103s Yoea s|

\ sik

9215 ul [enba Ajybnou
$91101S MaU Y} 1y

111dS 3H1
J1VMIVAI

€-1 3Y) auyap nok cmu/ \

{1eys 03 ybnoua jlam
puejsiapun nok asaid
||lews e puy noA ue)

*PaAIasal sIYSIl ||y “||V 404 318y €102-1102 @ 1ySuAdod
susaed Suiids A10)S U] UO OJul BIOW 10§ /S1I0)S-13SN-BUNI|S /0JUI"dIUBIME]PIRYILI MMM/ /:d]Y JISIA

'ssado.d siy3 jo doy ayy 1e
be 1ieys pue
151y K103S 12U} UM

pIing

{4918] S13430 Y3 YuM
9dUBYUS pue 151y 38Ul
3UO Wouy eyep ajpuey
01 K103s ay3 Jds nok ue)
1514 op p|nod nok
uoIsIaA ajdwis e a1y S|

™\

¢K103s ay3 31jds 0} moy
1noqe pajyeq ||ns Nok ary

£592e419)Ul 3|d|NW BIA BIRp JO pUly
awes 3y} 196 1015 ay3 sv0Q

HNOYJIP Jsow ayy 3siy
op noA A103s JaAaydIyMm si “‘Y|ds
32yl X9|dwiod snoinqo ayy Aidde noA uaym

e aney A103s ay3 se0Q

154 S9W02 K103 Y2IYM Inoge
UOISIDAP AU} J3JIP PUR S3LI0}S

\ 1338] 343 dnoJB NoA pinod

wod°||e10j3]18R MMM

1T uod
oy

3|qeIsa)
|ews
3|qewns3
a|qenjeA
3|qenobaN
juspuadapu|
130 PINOYs S3103S - 1SIANI «

J31e] spupy Jayio
SU3 Y3IM dURYUS pue Isiy

5911035 91| Y1IM }1 dURYUD
pue 351y 2102 3|duwis Jeyy op
" 01Ai03s 3y1 31jds noK pjnod

iBuiuies| 1o/pue anjea
3y Jo 3sow sapiaoid jey) 210>
9|dwis e aney A103s ay) saoq

e1ep JO pupj auo ssad0ud
0} £103s 3y3 11ds nok ued) 18P JO SPUI| JURIIP 03 BuIyy
awes ay op £101s ay1 sa0q

SNY3Llvd
INILLITdS
JH1 A1ddVY

¢@uewuopad

31| syuswWaAINba [eUOIdUN-UOU

Buikysies wouy Ayxa|dwod
(¢suoneleA [e1anas s3sabbns yeyy $31 40 yonw 396 Ai0ls ayy saoq
,S1ep 3|qIXaYy, I| K101S dY) Ul W) /
urewop e a1ayy st ‘6'3) sa|na ssauisng

Jo A1au1eA e 9y A101s 9Yy) s20Q

(¢Buyrswos ,buunbyuod, 10
JBuibeuew, 1noge 69) ¢suonesado
a|dnnw apnpui £103s ay3 sa0Q

iMmoypjiom e

£191B] S3|NJ [BUOIIIPPE U}IM DUBYUD quasap A1o1s a3 s30g

pue 351y S3|NJ 3Y3 JO }95qNS e Op
noK os A103s ayj 1ds noA ued
;sa110)s ajeledas ojui
suonesado ayy yjds nok ued

EMOPHIOM 3Y3 JO 3|pplw 33 woy
S3110)S Y)IM 9DUBYUS PUB ISy MO|)
-}lom ay3 Jo pud pue Buiuuibag ayy

op noA os A103s ay) Jjds nok ued

£1918] $31101S 2I0W YJIM }I ddUeyUD
pue 151y mo|ppIom ay3 ybnoayy
321|s uly) e ey nok ued

AdOLS d43SN V 1IdS 01 MOH

Zuswialinbal [euonouny-uou

a1 Ajsnes 01 31 dueyUD Uy}

pue 351y }40M 31 3xew isnf 0}
K1035 3y3 31|ds noA pjno)

“}|ds 03 paau
NOA "anunuod *3UOp 31,N0A

N/

{A120[9A 10K Jo 9
0) 0y 3715 K101 BY1 5|

‘A103s Buriels ‘abue| J1 ‘poob e
196 0111 912|NWLIOJRI ASIMIBYI0 IO §IA
K1015 J3Y10UR UY)IM }I BUIqUWIOD
/
ON
\
(I1ews ‘sdeysad 1dadxa) ,[SIANI
Aysnes K103s Big ay3 saoq

A4OLS LNdNI
JH1 3¥vd3ud

/lwww.gargoylesoftware.com/training/csd

Workbook for http

ied, all content © 2015-2016 Gargoyle Software Inc

ise speci

Except where otherw

9 of 18

Qualities of a good story

Stories are easiest to work with if they are independent. That is, we'd like them to not
overlap in concept, and we'd like to be able to schedule and implement them in any order.

A good story is negotiable. It is not an explicit contract for features; rather, details will be co-
created by the customer and programmer during development. A good story captures the
essence, not the details. Over time, the card may acquire notes, test ideas, and so on, but
we don't need these to prioritize or schedule stories.

Z

A story needs to be valuable. We don't care about value to just anybody; it needs to be
valuable to the customer. Developers may have (legitimate) concerns, but these framed in a
way that makes the customer perceive them as important.

<

This is especially an issue when splitting stories. Think of a whole story as a multi-layer
cake, e.g., a network layer, a persistence layer, a logic layer, and a presentation layer. When
we split a story, we're serving up only part of that cake. We want to give the customer the
essence of the whole cake, and the best way is to slice vertically through the layers.
Developers often have an inclination to work on only one layer at a time (and get it "right");
but a full database layer (for example) has little value to the customer if there's no
presentation layer.

A good story can be estimated. We don't need an exact estimate, but just enough to help
the customer rank and schedule the story's implementation. Being estimable is partly a
function of being negotiated, as it's hard to estimate a story we don't understand. It is also a
function of size: bigger stories are harder to estimate. Finally, it's a function of the team:
what's easy to estimate will vary depending on the team's experience. (Sometimes a team
may have to split a story into a (time-boxed) "spike" that will give the team enough
information to make a decent estimate, and the rest of the story that will actually implement
the desired feature.)

Good stories tend to be small. Stories typically represent at most a few person-weeks worth

S of work. (Some teams restrict them to a few person-days of work.) Above this size, and it
seems to be too hard to know what's in the story's scope. Saying, "it would take me more
than a month" often implicitly adds, "as | don't understand what-all it would entail." Smaller
stories tend to get more accurate estimates.

Story descriptions can be small too (and putting them on an index card helps make that
happen). Alistair Cockburn described the cards as tokens promising a future conversation.
Remember, the details can be elaborated through conversations with the customer.

A good story is testable. Writing a story card carries an implicit promise: "l understand what |
want well enough that | could write a test for it." Several teams have reported that by
requiring customer tests before implementing a story, the team is more productive.
"Testability" has always been a characteristic of good requirements; actually writing the tests
early helps us know whether this goal is met.

If a customer doesn't know how to test something, this may indicate that the story isn't clear
enough, or that it doesn't reflect something valuable to them, or that the customer just needs
help in testing.

Source: http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/ by Bill Wake

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

10 0f 18

Stories Is it...

User Story Template [Independent
(] Negotiable
[] Valuable

As a bank customer, (] Estimable

| want to report fraud activity (] Small

so that | am not liable for false charges [Testable

As a bank customer
| want to pay my bills online Do we know...
so that | don’t have to go into a branch location
[] Who it’s for
With personas, can becomes cleaner: (] What is wanted

[] Why it’s important

Amy wants to report fraud activity Do we have...
so that she isn’t liable for false charges
[] Specific examples

Job Story Template

When a payments file arrives on our FTP server,
| want to load it into the payments system
So that customers are properly credited

See also: http://alanklement.blogspot.com/2013/09/replacing-user-story-with-job-story.html

Acceptance Criteria (specific examples)

Given Amy has fraud activity to report
When she fills out the online fraud form
Then a fraud report is sent to loss prevention

Given an incoming payments file is waiting on the FTP server with Amy’s payment details
When the batch process runs
Then Amy’s account is credited with the payment

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

http://alanklement.blogspot.com/2013/09/replacing-user-story-with-job-story.html

Cucumber features

Feature: Book a hotel
In this feature, we'll try different combinations of booking
Scenario: View upcoming reservations
Given I am on the space hotel site
And I am signed in as "Amy"
When I make a reservation for next month
Then I see that reservation on the upcoming reservations

Feature: Book a hotel
In this feature, we'll try different combinations of booking
Background:
Given I am on the space hotel site

Scenario: View upcoming reservations
And I am signed in as "Amy"
When I make a reservation for next month
Then I see that reservation on the upcoming reservations

Feature: Book a hotel
In this feature, we'll try different combinations of booking
Scenario Outline: View upcoming reservations
Given I am on the space hotel site
And I am signed in as "<user>"
When I make a reservation for <when>
Then I see that reservation on the upcoming reservations

Examples:
user	when
Amy	next week
Bob	tomorrow
Feature: Book a hotel

In this feature, we'll try different combinations of booking

Scenario Outline: View upcoming reservations
Given I am on the space hotel site with reservations:

| confirmation id | from | to | who |
| 123 | 2024-01-03 | 2024-01-03 | Amy |
And I am signed in as "Amy"

When I cancel a reservation 123

11 of 18

a hotel

page

a hotel

page

a hotel

page

a hotel

Then that reservation is no longer on the upcoming reservations page

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

12 0f 18

Importance of Common Language

* Brush
« Tooth
» Paste
» Bristles
« Water

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

Pair Programming

Styles

Driver-Navigator

The driver is at the keyboard, and takes a
tactical view of the problem. The navigator
observes and takes a strategic view of the
problem, offering suggestions and asking
questions. The roles may switch back and
forth as needed, depending on how the work
flows and how the interaction between the
two people works.

Useful for general development and for
knowledge/skill transfer. When used for
knowledge/skills transfer, the junior member
takes the driver role and the senior member
takes the navigator role.

Ping-Pong

One member of the pair writes a failing unit
test. The second member writes production
code to make the test pass, and then writes
the next unit test. The first member writes
production code to make that test pass, and
then writes the next unit test. The pair
continues in the same way to solve the
problem. The ping-pong style is usually

Anti-Patterns

Superman. He refuses to be impaired by
a slow partner. He will hog the keyboard
and save the world all on his own.
Absent-Mind Ed. He’s distracted, sleepy,
or preoccupied with other things besides
the task at hand.

The Back-Seat Driver. As navigator, he
breaks the driver’s train of thought with a
non-stop stream of trivial comments.

The King of Shortcuts. As navigator, he
mentions every keyboard shortcut the
driver fails to use, but doesn’t make
practical or meaningful observations.

R/
L 4

7/
%

R/
L 4

7/
%

130f 18

@

A) One set of keyboard, monitor
and mouse, shared by both.
Sitting side by side.

B) One set of keyboard, monitor
and mouse, shared by both.
Sitting angled to each other.

dJ

[—

.

@@

C) Each has a keyboard, monitor and
mouse connected to the same machine.
Sitting side by side.

o

D) Each has a keyboard, monitor and
mouse, connected to the same machine.
Sitting across from each other.

applied when two peers are working on a
problem together.

Silent Running

Typically as a variation on the ping-pong
style, the developers do not speak aloud, but
communicate only through the test code and
production code they write.

Silent running is sometimes used as a way to
alleviate the monotony of a long pairing
session.

+ The Anti-Mentor. As navigator, this
senior developer leaves his junior partner
without guidance.

% Fearful Freddie. He refuses to refactor
code he didn’t personally write.

+ The Defactorator. He reverses
refactorings others have done to make
the code consistent with his personal
preferences.

+ The Soloist. He works solo as much as
possible, and has a large repertoire of
excuses not to pair.

Source: “Does Pair Programming Work?” - presentation by Mike Bowler & Dave Nicolette

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

TDD: Test Driven
Development

START

Identify the smallest piece of functionality that
we want to write. Typically this will be a single
path through a single method. It might be a
"happy path" where the code does as
expected or it could be an error condition.

RED - Write a failing test
Write an automated test that fails when you
run it.

In order to even get the code to be
executable at all, you'll need to write a tiny bit
of the production code. Write only the bare
minimum that allows the code to execute
without having it actually perform any logic.

Run the test and watch it fail. Sometimes
you'll run the test and it won't fail and this
indicates that there's a problem somewhere.
Most often the test is wrong but sometimes
the production code isn't doing what we
expect.

Ensure that the code is failing for the right
reasons. If we expect it to return a 0 and
instead it throws an exception, that is
certainly a failure but it's failing for the wrong
reasons.

GREEN - Make it pass

Now change the production code to make the
pass. Do this in the simplest way you can
possibly think to do it.

The goal here is just to make the test pass, in
the easiest way possible. We don't care how
pretty or how fast the code is, if it doesn't
work. Make it work before doing anything
else.

Run the test to verify that it really is working.
Run all the tests, if you can, to ensure you
didn't break anything else as you were
making this one work.

14 of 18

Write a
test that
fails

Implement
Run the enough to
test and
watch it

2012-2015 Gargoyle Software Inc.

REFACTOR - Make it beautiful

Now that we have working code, let's make it
beautiful. Refactor it to keep the code clean.
Remove duplication. Make the code easy to
read. Make it something you can be proud of.

Now run all the tests again to ensure that
nothing got broken as we were cleaning the
code. If something did get broken then fix it
now, before we move on.

CHECK IT IN!

Yes, really check it in to version control. You
now have a tiny sliver of production code that
is working and tested. By definition, we
wouldn't be at this point if anything were
broken. Check it in.

A surprising number of developers are really
uncomfortable with checking in this
frequently. The more often we integrate with
the rest of the code, the easier it will be. If
you're not checking in several times an hour
then either you're very new to the technique
or you're doing something wrong.

START AGAIN
Start all over at the top. Find the next tiny

slice of functionality and work through the
cycle again.

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

150f 18

Agile Testing Quadrants and Pyramid

Business
facing
Sources:
The agile testing quadrants
http://lisacrispin.com/2011/11/08/using-
o) the-agile-testing-quadrants/
£ E £ 5
o) § $3 Merging the quadrants and the pyramid
o) 2 g g_ http://swtester.blogspot.com/2015/04/
D+ I5) agile-testing-automation.html
Technology
facing

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/

Continuous Delivery

16 of 18

Prerequisites
Compl Zip/war/| [Version | [Push to ‘Application ‘ Comparative
ompile .
. tar artifacts | | servers errors measurements
e Extreme quality Vo7 o N >
. \ , \ Il 1 P
e Automate and Streamline \ \ L
e Continuous integration ‘ Pull P‘ Package H Verify ’—»‘ Deploy —»‘ Monitorr‘
. e T ®
° O_ne click deploy R Y\
® Single branch \ Unationced | | mwrts |
rollback

® Feature flags

® Monitoring and alerts

P -7 e
—a” - »
tests analysis
.
1

Deploy to

specialized servers
7

__________ »| Run client
RN side tests

i Ly - v \\\ Run AT
® Absolute and comparative coe] e T [Favarmance
metrics metrics Y Y / scalability

® Whole team

Measurements

etc

| Individual stories or features | | May be batched |
[| [|
Request Development Development Production Production Production
ready starts done deploy approved deploy done release done

| | | | | |
| | | | | |
N I A I A
[} [} [} [} [} [}
I I I I I I
| | | | | |
| | | | | |
! Waiting for ! Waiting for ! Waiting for ! Waiting for ! Waiting for !
: capacity, tools, : work to be : enough work : deploy to : approval to :
: other groups : done : to batch up to ! happen : turn it on :

make it worth

deploying

Work begins

We are not
coming back to
this story.

The request is
clear enough that

Deployed but
perhaps not
enabled

In use by real
people, not just
test accounts

Full regression
test done.
All pre-prod steps
done

we know what
we’re being asked
to do.

After this point, if
the code doesn’t
do what we
expect, that’s a
bug.

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

17 of 18

Appendix A: Rules for the Gilded Rose exercise

Hi and welcome to team Gilded Rose. As you know, we are a small inn with a prime location in a
prominent city ran by a friendly innkeeper named Allison. We also buy and sell only the finest
goods. Unfortunately, our goods are constantly degrading in quality as they approach their sell
by date. We have a system in place that updates our inventory for us. It was developed by a
no-nonsense type named Leeroy, who has moved on to new adventures. Your task is to add
the new feature to our system so that we can begin selling a new category of items.

First an introduction to our system:

. All items have a Sellln value which denotes the number of days we have to sell the item
. All items have a Quality value which denotes how valuable the item is

- At the end of each day our system lowers both values for every item

Pretty simple, right? Well this is where it gets interesting:

- Once the sell by date has passed, Quality degrades twice as fast

- The Quality of an item is never negative

- "Aged Brie" actually increases in Quality the older it gets

. The Quality of an item is never more than 50

. "Sulfuras", being a legendary item, never has to be sold or decreases in Quality

. "Backstage passes", like aged brie, increases in Quality as it's Sellln value approaches;
Quality increases by 2 when there are 10 days or less and by 3 when there are 5 days or less
but Quality drops to 0 after the concert

We have recently signed a supplier of conjured items. This requires an
update to our system:

« "Conjured" items degrade in Quality twice as fast as normal items

Feel free to make any changes to the UpdateQuality method and add any new code as long as
everything still works correctly. However, do not alter the ltem class or ltems property as those
belong to the goblin in the corner who will insta-rage and one-shot you as he doesn't believe in
shared code ownership (you can make the UpdateQuality method and Items property static if
you like, we'll cover for you).

Just for clarification, an item can never have its Quality increase above 50, however "Sulfuras"
is a legendary item and as such its Quality is 80 and it never alters.

Source: https://github.com/emilybache/GildedRose-Refactoring-Kata

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

18 0of 18

Appendix B: Rules for the elephant carpaccio exercise

Instructions

1. Break into teams of 2-3 people, one workstation per team.

2. Preparation - Each team writes down on paper the 10-20 demo-able user stories ("slices")
they will develop and possibly demo. Each should be doable in 3-8 minutes. No slice is just
mockup of Ul, creation of a data table or data structure. All demos show real input & output
(not test harness).

3. Discussion - Instructor/facilitator leads discussion of the slices, what is and isn't acceptable,
solicits ways to slice finer.

4, Development - A fixed time-box of 40 minutes, five 8-minute development sprints, clock
does not stop. At the end of each sprint, each team shows its product to another team.

5. Debrief

Product

Accept 3 inputs from the user:
+ How many items

- Price peritem

- 2-letter state code

Output the total price. Give a discount based on the total price, add tax based on the state and
the discounted price.

Order value Discount rate State Tax rate
$1000 3% uTt 6.85%
$5000 5% NV 8%
$7000 7% TX 6.35%
$10000 10% AL 4%
$50000 15% CA 8.25%

Source: http://blog.crisp.se/2013/07/25/henrikkniberg/elephant-carpaccio-facilitation-guide

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

