
�  of �1 18

Certified Scrum Developer
Course Workbook

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc



�  of �2 18

Agile Manifesto
We are uncovering better ways of developing software by doing it and helping others do it. 

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Agile Principles
Our highest priority is to satisfy the customer 
through early and continuous delivery of 
valuable software.

Welcome changing requirements, even late 
in development. Agile processes harness 
change for the customer's competitive 
advantage.

Deliver working software frequently, from a 
couple of weeks to a couple of months, with a 
preference to the shorter timescale.

Business people and developers must work 
together daily throughout the project.

Build projects around motivated individuals. 
Give them the environment and support they 
need, and trust them to get the job done.

The most efficient and effective method of 
conveying information to and within a 
development team is face-to-face 
conversation. 

Working software is the primary measure of 
progress.

Agile processes promote sustainable 
development. The sponsors, developers, and 
users should be able to maintain a constant 
pace indefinitely.

Continuous attention to technical excellence 
and good design enhances agility.

Simplicity--the art of maximizing the amount 
of work not done--is essential.

The best architectures, requirements, and 
designs emerge from self-organizing teams.

At regular intervals, the team reflects on how 
to become more effective, then tunes and 
adjusts its behaviour accordingly.

Source: http://www.agilemanifesto.org 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc



�  of �3 18

Introduction to the class

Why are we here?
Effective Scrum (or more generally, Agile) teams are able to deliver more value, sooner, to their 
clients. Additionally, they’re able to continuously deliver this value over long periods of time.

To do that, we require effective teamwork and product management to ensure we’re building the 
right thing at the right time. We also need technical excellence in order to ensure that we’re 
building the thing “right”.

This class is about the latter. How do we build technical excellence into everything we do? How 
do we get quality up and delivery faster? How do we change so that we’re spending more time 
on building new features and less on fixing broken ones?

A note about getting better

SATIR CHANGE CURVE 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

Pe
rfo

rm
an

ce

Time

Old 
sta

tus
 qu

o

New
 st

atu
s q

uo

Res
ist

an
ce

Cha
os

Int
eg

rat
ion

 & 

pra
cti

ce

New practice 
introduced

Team starts to understand 
how it will really benefit them

Team is proficient 
at new practice



�  of �4 18

Cynefin 

Source: http://cognitive-edge.com/ 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc



�  of �5 18

Scrum

The definitive documentation for Scrum is the Scrum Guide, which can be found at http://
www.scrumguides.org/

If something isn’t in this document then it isn’t part of canonical scrum. Having said that, there 
are many practices that today are commonplace for Scrum teams and yet aren’t in this 
document at all. Stories, story points and technical practices to name just a few. 

Ken and Jeff, the creators of Scrum and authors of the Scrum Guide, have stated repeatedly 
that anyone using Scrum for software development should extend the scrum practices with 
strong technical practices. Specifically, they refer to the set of technical practices from eXtreme 
Programming (XP) which is what we will cover in this class. 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

24 Hours

Sprint
1-4 weeks

Daily standup

Team
retrospective

Product backlog
refinement

Sprint review 
& demo

Sprint planning

Working, tested 
code that could 

be put in 
production if the 
business choses

Sprint
Backlog

Product
Backlog

http://www.scrumguides.org/


�  of �6 18

Personas
Who is trying to use the product?
What is this person wanting to do?
What need is this product solving for them? 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

Name:

Background:

Reason for using the product:

Name:

Background:

Reason for using the product:



�  of �7 18

Story Mapping

Source: http://winnipegagilist.blogspot.ca/2012/03/how-to-create-user-story-map.html

 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

http://winnipegagilist.blogspot.ca/2012/03/how-to-create-user-story-map.html


�  of �8 18

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

La
st

 u
pd

at
ed

 3
/2

6/
20

13
Co

py
ri

gh
t ©

 2
01

1-
20

13
 A

gi
le

 F
or

 A
ll.

 A
ll 

ri
gh

ts
 r

es
er

ve
d.

Vi
si

t h
ttp

:/
/w

w
w

.ri
ch

ar
dl

aw
re

nc
e.

in
fo

/s
pl

itt
in

g-
us

er
-s

to
rie

s/
 fo

r m
or

e 
in

fo
 o

n 
th

e 
st

or
y 

sp
lit

tin
g 

pa
tte

rn
s

w
w

w
.a

gi
le

fo
ra

ll.
co

m

HO
W

 T
O 

SP
LI

T 
A 

US
ER

 S
TO

RY
PR

EP
AR

E 
TH

E
IN

PU
T 

ST
OR

Y

AP
PL

Y 
TH

E
SP

LI
TT

IN
G

PA
TT

ER
NS

W
OR

KF
LO

W
 S

TE
PS

OP
ER

AT
IO

NS
BU

SI
NE

SS
 R

UL
E

VA
RI

AT
IO

NS

IN
TE

RF
AC

E
VA

RI
AT

IO
NS

VA
RI

AT
IO

NS
IN

 D
AT

A

SI
M

PL
E/

CO
M

PL
EX

DE
FE

R
PE

RF
OR

M
AN

CE

BR
EA

K 
OU

T 
A 

SP
IK

E

M
AJ

OR
 E

FF
OR

T

EV
AL

UA
TE

TH
E 

SP
LI

T

D
oe

s t
he

 b
ig

 st
or

y 
sa

tis
fy

 
IN

VE
ST

* (
ex

ce
pt

, p
er

ha
ps

, s
m

al
l)?

Ar
e 

th
e 

ne
w

 st
or

ie
s 

ro
ug

hl
y 

eq
ua

l i
n 

siz
e?

D
oe

s t
he

 st
or

y 
de

sc
rib

e 
a 

w
or

kfl
ow

?

Ca
n 

yo
u 

sp
lit

 th
e 

st
or

y 
so

 y
ou

 d
o 

th
e 

be
gi

nn
in

g 
an

d 
en

d 
of

 th
e 

w
or

k-
flo

w
 fi

rs
t a

nd
 e

nh
an

ce
 w

ith
 st

or
ie

s 
fro

m
 th

e 
m

id
dl

e 
of

 th
e 

w
or

kfl
ow

?

Ca
n 

yo
u 

ta
ke

 a
 th

in
 sl

ic
e 

th
ro

ug
h 

th
e 

w
or

kfl
ow

 fi
rs

t a
nd

 
en

ha
nc

e 
it 

w
ith

 m
or

e 
st

or
ie

s l
at

er
?

D
oe

s t
he

 st
or

y 
in

cl
ud

e 
m

ul
tip

le
 

op
er

at
io

ns
? (

e.
g.

 is
 it

 a
bo

ut
 "m

an
ag

in
g"

 
or

 "c
on

fig
ur

in
g"

 so
m

et
hi

ng
?)

Ca
n 

yo
u 

sp
lit

 th
e 

op
er

at
io

ns
 

in
to

 se
pa

ra
te

 st
or

ie
s?

D
oe

s t
he

 st
or

y 
ha

ve
 a

 v
ar

ie
ty

 o
f 

bu
sin

es
s r

ul
es

? (
e.

g.
 is

 th
er

e 
a 

do
m

ai
n 

te
rm

 in
 th

e 
st

or
y 

lik
e 

"fl
ex

ib
le

 d
at

es
" 

th
at

 su
gg

es
ts

 se
ve

ra
l v

ar
ia

tio
ns

?)

Ca
n 

yo
u 

sp
lit

 th
e 

st
or

y 
so

 y
ou

 
do

 a
 su

bs
et

 o
f t

he
 ru

le
s fi

rs
t a

nd
 

en
ha

nc
e 

w
ith

 a
dd

iti
on

al
 ru

le
s l

at
er

?

D
oe

s t
he

 st
or

y 
do

 th
e 

sa
m

e 
th

in
g 

to
 d

iff
er

en
t k

in
ds

 o
f d

at
a?

Ca
n 

yo
u 

sp
lit

 th
e 

st
or

y 
to

 
pr

oc
es

s o
ne

 k
in

d 
of

 d
at

a 
fir

st
 a

nd
 e

nh
an

ce
 w

ith
 th

e 
ot

he
r k

in
ds

 la
te

r?

Ca
n 

yo
u 

sp
lit

 th
e 

st
or

y 
to

 
ha

nd
le

 d
at

a 
fro

m
 o

ne
 

in
te

rf
ac

e 
fir

st
 a

nd
 e

nh
an

ce
 

w
ith

 th
e 

ot
he

rs
 la

te
r?

D
oe

s t
he

 st
or

y 
ge

t t
he

 sa
m

e 
ki

nd
 o

f d
at

a 
vi

a 
m

ul
tip

le
 in

te
rf

ac
es

?

W
he

n 
yo

u 
ap

pl
y 

th
e 

ob
vi

ou
s 

sp
lit

, i
s w

hi
ch

ev
er

 st
or

y 
yo

u 
do

 
fir

st
 th

e 
m

os
t d

iffi
cu

lt?

Co
ul

d 
yo

u 
gr

ou
p 

th
e 

la
te

r 
st

or
ie

s a
nd

 d
ef

er
 th

e 
de

ci
sio

n 
ab

ou
t w

hi
ch

 st
or

y 
co

m
es

 fi
rs

t?

D
oe

s t
he

 st
or

y 
ha

ve
 a

 si
m

pl
e 

co
re

 th
at

 p
ro

vi
de

s m
os

t o
f t

he
 

va
lu

e 
an

d/
or

 le
ar

ni
ng

?

Co
ul

d 
yo

u 
sp

lit
 th

e 
st

or
y 

to
 

do
 th

at
 si

m
pl

e 
co

re
 fi

rs
t a

nd
 

en
ha

nc
e 

it 
w

ith
 la

te
r s

to
rie

s?

D
oe

s t
he

 st
or

y 
ge

t m
uc

h 
of

 it
s 

co
m

pl
ex

ity
 fr

om
 sa

tis
fy

in
g 

no
n-

fu
nc

tio
na

l r
eq

ui
re

m
en

ts
 li

ke
 

pe
rf

or
m

an
ce

?

Co
ul

d 
yo

u 
sp

lit
 th

e 
st

or
y 

to
 ju

st
 m

ak
e 

it 
w

or
k 

fir
st

 a
nd

 
th

en
 e

nh
an

ce
 it

 to
 sa

tis
fy

 th
e 

no
n-

fu
nc

tio
na

l r
eq

ui
re

m
en

t?

Ar
e 

yo
u 

st
ill

 b
affl

ed
 a

bo
ut

 
ho

w
 to

 sp
lit

 th
e 

st
or

y?

Ca
n 

yo
u 

fin
d 

a 
sm

al
l 

pi
ec

e 
yo

u 
un

de
rs

ta
nd

 
w

el
l e

no
ug

h 
to

 st
ar

t?
Ca

n 
yo

u 
de

fin
e 

th
e 

1-
3 

qu
es

tio
ns

 m
os

t h
ol

di
ng

 
yo

u 
ba

ck
?

Ta
ke

 a
 b

re
ak

 
an

d 
tr

y 
ag

ai
n.

W
rit

e 
a 

sp
ik

e 
w

ith
 th

os
e 

qu
es

tio
ns

, d
o 

th
e 

m
in

im
um

 
to

 a
ns

w
er

 th
em

, a
nd

 st
ar

t 
ag

ai
n 

at
 th

e 
to

p 
of

 th
is 

pr
oc

es
s

W
rit

e 
th

at
 st

or
y 

fir
st

, 
bu

ild
 it

, a
nd

 st
ar

t a
ga

in
 

at
 th

e 
to

p 
of

 th
is 

pr
oc

es
s.

D
oe

s t
he

 st
or

y 
ha

ve
 a

 
co

m
pl

ex
 in

te
rf

ac
e?

Is
 th

er
e 

a 
sim

pl
e 

ve
rs

io
n 

yo
u 

co
ul

d 
do

 fi
rs

t?

Tr
y 

an
ot

he
r p

at
te

rn
 o

n 
th

e 
or

ig
in

al
 st

or
y 

or
 th

e 
la

rg
er

 
po

st
-s

pl
it 

st
or

ie
s.

Tr
y 

an
ot

he
r p

at
te

rn
. 

Yo
u 

pr
ob

ab
ly

 h
av

e 
w

as
te

 
in

 e
ac

h 
of

 y
ou

r s
to

rie
s.

Tr
y 

an
ot

he
r p

at
te

rn
.

Ar
e 

th
er

e 
st

or
ie

s y
ou

 
ca

n 
de

pr
io

rit
iz

e 
or

 d
el

et
e?

Is
 th

er
e 

an
 o

bv
io

us
 st

or
y 

to
 st

ar
t w

ith
 th

at
 g

et
s y

ou
 

ea
rly

 v
al

ue
, l

ea
rn

in
g,

 ri
sk

 
m

iti
ga

tio
n,

 e
tc

.?

Co
m

bi
ne

 it
 w

ith
 a

no
th

er
 st

or
y 

or
 o

th
er

w
ise

 re
fo

rm
ul

at
e 

it 
to

 g
et

 
a 

go
od

, i
f l

ar
ge

, s
ta

rt
in

g 
st

or
y.

Is
 th

e 
st

or
y 

siz
e 

1⁄10
 to

 
1⁄6

 o
f y

ou
r v

el
oc

ity
?

Is
 e

ac
h 

st
or

y 
ab

ou
t 

1⁄10
 to

 1⁄6
 o

f y
ou

r v
el

oc
ity

?

D
o 

ea
ch

 o
f t

he
 

st
or

ie
s s

at
isf

y 
IN

VE
ST

?

Co
nt

in
ue

. Y
ou

 
ne

ed
 to

 sp
lit

 it
.

Yo
u’

re
 d

on
e.

Tr
y 

an
ot

he
r p

at
te

rn
 to

 
se

e 
if 

yo
u 

ca
n 

ge
t t

hi
s.

Yo
u’

re
 d

on
e,

 th
ou

gh
 y

ou
co

ul
d 

tr
y 

an
ot

he
r p

at
te

rn
to

 se
e 

if 
it 

w
or

ks
 b

et
te

r.

YE
S

NO

sta
rt h

ere

* I
N

VE
ST

 - 
St

or
ie

s s
ho

ul
d 

be
: 

1

2

3

In
de

pe
nd

en
t

N
eg

ot
ia

bl
e

Va
lu

ab
le

Es
tim

ab
le

Sm
al

l
Te

st
ab

le

la
st

 re
so

rt

YE
S

NO



�  of �9 18

Qualities of a good story

Source: http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/ by Bill Wake  

I
Stories are easiest to work with if they are independent. That is, we'd like them to not 
overlap in concept, and we'd like to be able to schedule and implement them in any order.

N
A good story is negotiable. It is not an explicit contract for features; rather, details will be co-
created by the customer and programmer during development. A good story captures the 
essence, not the details. Over time, the card may acquire notes, test ideas, and so on, but 
we don't need these to prioritize or schedule stories.

V
A story needs to be valuable. We don't care about value to just anybody; it needs to be 
valuable to the customer. Developers may have (legitimate) concerns, but these framed in a 
way that makes the customer perceive them as important.

This is especially an issue when splitting stories. Think of a whole story as a multi-layer 
cake, e.g., a network layer, a persistence layer, a logic layer, and a presentation layer. When 
we split a story, we're serving up only part of that cake. We want to give the customer the 
essence of the whole cake, and the best way is to slice vertically through the layers. 
Developers often have an inclination to work on only one layer at a time (and get it "right"); 
but a full database layer (for example) has little value to the customer if there's no 
presentation layer.

E
A good story can be estimated. We don't need an exact estimate, but just enough to help 
the customer rank and schedule the story's implementation. Being estimable is partly a 
function of being negotiated, as it's hard to estimate a story we don't understand. It is also a 
function of size: bigger stories are harder to estimate. Finally, it's a function of the team: 
what's easy to estimate will vary depending on the team's experience. (Sometimes a team 
may have to split a story into a (time-boxed) "spike" that will give the team enough 
information to make a decent estimate, and the rest of the story that will actually implement 
the desired feature.)

S
Good stories tend to be small. Stories typically represent at most a few person-weeks worth 
of work. (Some teams restrict them to a few person-days of work.) Above this size, and it 
seems to be too hard to know what's in the story's scope. Saying, "it would take me more 
than a month" often implicitly adds, "as I don't understand what-all it would entail." Smaller 
stories tend to get more accurate estimates.

Story descriptions can be small too (and putting them on an index card helps make that 
happen). Alistair Cockburn described the cards as tokens promising a future conversation. 
Remember, the details can be elaborated through conversations with the customer.

T
A good story is testable. Writing a story card carries an implicit promise: "I understand what I 
want well enough that I could write a test for it." Several teams have reported that by 
requiring customer tests before implementing a story, the team is more productive. 
"Testability" has always been a characteristic of good requirements; actually writing the tests 
early helps us know whether this goal is met.

If a customer doesn't know how to test something, this may indicate that the story isn't clear 
enough, or that it doesn't reflect something valuable to them, or that the customer just needs 
help in testing.

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/


�  of �10 18

Stories
User Story Template

As <who>, I want to <what> so that <why>

As a bank customer, 
I want to report fraud activity 
so that I am not liable for false charges

As a bank customer
I want to pay my bills online
so that I don’t have to go into a branch location

With personas, can becomes cleaner:

<who>, wants to <what> so that <why>

Amy wants to report fraud activity
so that she isn’t liable for false charges

Job Story Template

When <situation>, I want to <what>, so that <why>

When a payments file arrives on our FTP server,
I want to load it into the payments system
So that customers are properly credited

See also: http://alanklement.blogspot.com/2013/09/replacing-user-story-with-job-story.html

Acceptance Criteria (specific examples)

Given <precondition>, when <action> then <result>

Given Amy has fraud activity to report
When she fills out the online fraud form
Then a fraud report is sent to loss prevention 

Given an incoming payments file is waiting on the FTP server with Amy’s payment details
When the batch process runs
Then Amy’s account is credited with the payment

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

Is it…

▢ Independent
▢ Negotiable
▢ Valuable
▢ Estimable
▢ Small
▢ Testable

Do we know…

▢ Who it’s for
▢ What is wanted
▢ Why it’s important

Do we have…

▢  Specific examples

http://alanklement.blogspot.com/2013/09/replacing-user-story-with-job-story.html


�  of �11 18

Cucumber features
Feature: Book a hotel 
    In this feature, we'll try different combinations of booking a hotel 

    Scenario: View upcoming reservations 
        Given I am on the space hotel site 
        And I am signed in as "Amy" 
        When I make a reservation for next month 
        Then I see that reservation on the upcoming reservations page 

Feature: Book a hotel 
    In this feature, we'll try different combinations of booking a hotel 

    Background:  
        Given I am on the space hotel site 

    Scenario: View upcoming reservations 
        And I am signed in as "Amy" 
        When I make a reservation for next month 
        Then I see that reservation on the upcoming reservations page 

Feature: Book a hotel 
    In this feature, we'll try different combinations of booking a hotel 

    Scenario Outline: View upcoming reservations 
        Given I am on the space hotel site 
        And I am signed in as "<user>" 
        When I make a reservation for <when> 
        Then I see that reservation on the upcoming reservations page 

    Examples: 
        | user | when      | 
        | Amy  | next week | 
        | Bob  | tomorrow  | 

Feature: Book a hotel 
    In this feature, we'll try different combinations of booking a hotel 

    Scenario Outline: View upcoming reservations 
        Given I am on the space hotel site with reservations: 
            | confirmation_id | from       | to         | who | 
            | 123             | 2024-01-03 | 2024-01-03 | Amy | 
        And I am signed in as "Amy" 
        When I cancel a reservation 123 
        Then that reservation is no longer on the upcoming reservations page 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc



�  of �12 18

Importance of Common Language

• Brush
• Tooth
• Paste
• Bristles
• Water 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc



�  of �13 18

Pair Programming
Styles
Driver-Navigator
The driver is at the keyboard, and takes a 
tactical view of the problem. The navigator 
observes and takes a strategic view of the 
problem, offering suggestions and asking 
questions. The roles may switch back and 
forth as needed, depending on how the work 
flows and how the interaction between the 
two people works.

Useful for general development and for 
knowledge/skill transfer. When used for 
knowledge/skills transfer, the junior member 
takes the driver role and the senior member 
takes the navigator role.

Ping-Pong
One member of the pair writes a failing unit 
test. The second member writes production 
code to make the test pass, and then writes 
the next unit test. The first member writes 
production code to make that test pass, and 
then writes the next unit test. The pair 
continues in the same way to solve the 
problem.  The ping-pong style is usually 

applied when two peers are working on a 
problem together. 

Silent Running
Typically as a variation on the ping-pong 
style, the developers do not speak aloud, but 
communicate only through the test code and 
production code they write. 
Silent running is sometimes used as a way to 
alleviate the monotony of a long pairing 
session. 

Anti-Patterns
Superman. He refuses to be impaired by 
a slow partner. He will hog the keyboard 
and save the world all on his own.
Absent-Mind Ed. He’s distracted, sleepy, 
or preoccupied with other things besides 
the task at hand.
The Back-Seat Driver. As navigator, he 
breaks the driver’s train of thought with a 
non-stop stream of trivial comments.
The King of Shortcuts. As navigator, he 
mentions every keyboard shortcut the 
driver fails to use, but doesn’t make 
practical or meaningful observations.

The Anti-Mentor. As navigator, this 
senior developer leaves his junior partner 
without guidance.
Fearful Freddie. He refuses to refactor 
code he didn’t personally write.
The Defactorator. He reverses 
refactorings others have done to make 
the code consistent with his personal 
preferences.
The Soloist. He works solo as much as 
possible, and has a large repertoire of 
excuses not to pair. 

Source: “Does Pair Programming Work?” - presentation by Mike Bowler & Dave Nicolette

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

A) One set of keyboard, monitor 
and mouse, shared by both. 

Sitting side by side.

C) Each has a keyboard, monitor and 
mouse, connected to the same machine. 

Sitting side by side.

D) Each has a keyboard, monitor and 
mouse, connected to the same machine. 

Sitting across from each other.

B) One set of keyboard, monitor 
and mouse, shared by both. 
Sitting angled to each other.



�  of �14 18

TDD: Test Driven 
Development
START
Identify the smallest piece of functionality that 
we want to write. Typically this will be a single 
path through a single method. It might be a 
"happy path" where the code does as 
expected or it could be an error condition.

RED - Write a failing test
Write an automated test that fails when you 
run it.

In order to even get the code to be 
executable at all, you'll need to write a tiny bit 
of the production code. Write only the bare 
minimum that allows the code to execute 
without having it actually perform any logic.

Run the test and watch it fail. Sometimes 
you'll run the test and it won't fail and this 
indicates that there's a problem somewhere. 
Most often the test is wrong but sometimes 
the production code isn't doing what we 
expect.

Ensure that the code is failing for the right 
reasons. If we expect it to return a 0 and 
instead it throws an exception, that is 
certainly a failure but it's failing for the wrong 
reasons.

GREEN - Make it pass
Now change the production code to make the 
pass. Do this in the simplest way you can 
possibly think to do it.

The goal here is just to make the test pass, in 
the easiest way possible. We don't care how 
pretty or how fast the code is, if it doesn't 
work. Make it work before doing anything 
else.

Run the test to verify that it really is working. 
Run all the tests, if you can, to ensure you 
didn't break anything else as you were 
making this one work.

REFACTOR - Make it beautiful
Now that we have working code, let's make it 
beautiful. Refactor it to keep the code clean. 
Remove duplication. Make the code easy to 
read. Make it something you can be proud of.

Now run all the tests again to ensure that 
nothing got broken as we were cleaning the 
code. If something did get broken then fix it 
now, before we move on.

CHECK IT IN!
Yes, really check it in to version control. You 
now have a tiny sliver of production code that 
is working and tested. By definition, we 
wouldn't be at this point if anything were 
broken. Check it in.

A surprising number of developers are really 
uncomfortable with checking in this 
frequently. The more often we integrate with 
the rest of the code, the easier it will be. If 
you're not checking in several times an hour 
then either you're very new to the technique 
or you're doing something wrong.

START AGAIN

Start all over at the top. Find the next tiny 
slice of functionality and work through the 
cycle again.

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

Write a 
test that 

fails Run the 
test and 
watch it 

fail

Implement 
enough to 

make it 
pass

Run the 
test and 
watch it 

pass

Refactor 
for clarity

Run the 
test and 
watch it 

pass

Check it 
in!

Start

© 2012-2015 Gargoyle Software Inc.

RED

GRE
ENREFACTOR

TDD
Cycle



�  of �15 18

Agile Testing Quadrants and Pyramid

Sources:

The agile testing quadrants 
http://lisacrispin.com/2011/11/08/using-
the-agile-testing-quadrants/ 

Merging the quadrants and the pyramid  
http://swtester.blogspot.com/2015/04/
agile-testing-automation.html

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

Business 
facing

Technology 
facing

Su
pp

or
tin

g 
th

e 
te

am

C
rit

iq
ue

 th
e 

pr
od

uc
t

http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/


�  of �16 18

Continuous Delivery
Prerequisites

Extreme quality
Automate and Streamline

Continuous integration
One click deploy
Single branch

Feature flags
Monitoring and alerts

Absolute and comparative 
metrics

Whole team

Measurements
 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc

Development
starts

Development
done

Production
deploy approved

Production
deploy done

Production
release done

Request
ready

Waiting for 
capacity, tools, 
other groups 

etc

Waiting for 
work to be 

done

Waiting for 
enough work 
to batch up to 
make it worth 

deploying

Waiting for 
deploy to 
happen

Waiting for 
approval to 
turn it on

Full regression 
test done.

We are not 
coming back to 

this story.

In use by real 
people, not just 
test accounts

Deployed but 
perhaps not 

enabled

The request is 
clear enough that 

we know what 
we’re being asked 

to do.

Work begins

After this point, if 
the code doesn’t 

do what we 
expect, that’s a 

bug.

All pre-prod steps 
done

Individual stories or features May be batched

Pull Package Verify Deploy

Run unit 
tests

Run AT 
tests

Static 
analysis

Compile Zip/war/
tar

Version 
artifacts

Push to 
servers

SecurityCode 
metrics

Deploy to 
specialized servers

Accessibility Performance 
/ scalability

Run client 
side tests 

Monitor

Alerts Unattended 
rollback

Application 
errors 

Comparative 
measurements 

Resource 
usage



�  of �17 18

Appendix A: Rules for the Gilded Rose exercise
Hi and welcome to team Gilded Rose. As you know, we are a small inn with a prime location in a 
prominent city ran by a friendly innkeeper named Allison. We also buy and sell only the finest 
goods. Unfortunately, our  goods are constantly degrading in quality as they approach their sell 
by  date. We have a system in place that updates our inventory for us. It  was developed by a 
no-nonsense type named Leeroy, who has moved on to  new adventures. Your task is to add 
the new feature to our system so that we can begin selling a new category of items. 

First an introduction to our system:
• All items have a SellIn value which denotes the number of days we have to sell the item
• All items have a Quality value which denotes how valuable the item is
• At the end of each day our system lowers both values for every item

Pretty simple, right? Well this is where it gets interesting:

• Once the sell by date has passed, Quality degrades twice as fast
• The Quality of an item is never negative
• "Aged Brie" actually increases in Quality the older it gets
• The Quality of an item is never more than 50
• "Sulfuras", being a legendary item, never has to be sold or decreases in Quality
• "Backstage passes", like aged brie, increases in Quality as it's SellIn value approaches; 

Quality increases by 2 when there are 10 days or less and by 3 when there are 5 days or less 
but Quality drops to 0 after the concert

We have recently signed a supplier of conjured items. This requires an 
update to our system:

• "Conjured" items degrade in Quality twice as fast as normal items

Feel free to make any changes to the UpdateQuality method and add any new code as long as 
everything still works correctly. However, do not alter  the Item class or Items property as those 
belong to the goblin in the corner who will insta-rage and one-shot you as he doesn't believe in 
shared code ownership (you can make the UpdateQuality method and Items property static if 
you like, we'll cover for you). 

Just for clarification, an item can never have its Quality increase above 50, however "Sulfuras" 
is a legendary item and as such its Quality is 80 and it never alters.

Source: https://github.com/emilybache/GildedRose-Refactoring-Kata 

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc



�  of �18 18

Appendix B: Rules for the elephant carpaccio exercise
Instructions
1. Break into teams of 2-3 people, one workstation per team.
2. Preparation - Each team writes down on paper the 10-20 demo-able user stories ("slices") 

they will develop and possibly demo. Each should be doable in 3-8 minutes. No slice is just 
mockup of UI, creation of a data table or data structure. All demos show real input & output 
(not test harness).

3. Discussion - Instructor/facilitator leads discussion of the slices, what is and isn't acceptable, 
solicits ways to slice finer.

4. Development - A fixed time-box of 40 minutes, five 8-minute development sprints, clock 
does not stop. At the end of each sprint, each team shows its product to another team.

5. Debrief

Product
Accept 3 inputs from the user:
• How many items
• Price per item
• 2-letter state code

Output the total price. Give a discount based on the total price, add tax based on the state and 
the discounted price. 

Source: http://blog.crisp.se/2013/07/25/henrikkniberg/elephant-carpaccio-facilitation-guide

Order value Discount rate

$1000 3%

$5000 5%

$7000 7%

$10000 10%

$50000 15%

State Tax rate

UT 6.85%

NV 8%

TX 6.35%

AL 4%

CA 8.25%

Workbook for http://www.gargoylesoftware.com/training/csd
Except where otherwise specified, all content © 2015-2016 Gargoyle Software Inc


